
Team Juggernaut – Copyright 2007, DesignJug® 1

Team Juggernaut’s Robust Approach
for the 2007 DARPA Urban Challenge

Submitted June 1, 2007

George A. (Troy) Takach, Jr.

Team Leader, Senior Managing Partner
DesignJug

2999 Ksel Drive
Sandy, Utah 84092

troy_takach@designjug.com
Mobile: 801-870-8470

Thomas Grover

Communications & Marketing Manager
Kairos Autonomi

508 West 8360 South
Sandy, Utah 84070

thomas_grover@kairosautonomi.com
Mobile: 801-318-1289

Having developed a proven hardware platform and a robust software base from Grand Challenge
2005 technology, DesignJug approaches the Urban Challenge 2007 with an almost exclusive
focus on sensor and software development as it solves the complex challenges of autonomous
urban driving.

Beginning with the Pronto4™ Strap-on Autonomy System — a retrofit kit that makes any
existing vehicle with a steering wheel a drive-by-wire system — and including a flexible, shared
variable software base running on an open architecture system, DesignJug is enhancing its
technology by creating a new sensor platform with supporting software that provides input to the
team’s Actively Refined Reality Model.

This paper also outlines the following elements that support DesignJug’s efforts:

• using a spiral model development paradigm for rapid creation and assessment
• implementing complex navigation and traffic management
• executing an aggressive and frequent test schedule to achieve critical tasks
• combining several compatible tasks to push progress forward
• utilizing software workbenches that contain all required software and vehicle

infrastructure so software engineers can focus on the application or problem at hand, not
the architecture or language of the system

These key elements form the core of DesignJug’s efforts to successfully compete in the Urban
Challenge.

DISCLAIMER: The information contained in this paper does not represent the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department
of Defense. DARPA does not guarantee the accuracy or reliability of the information in this paper.

Team Juggernaut – Copyright 2007, DesignJug® 2

1. INTRODUCTION AND OVERVIEW

1.1 Introduction
Team Juggernaut competed in DARPA’s Grand Challenge 2005. The team was able to start with
absolutely nothing and deliver, in a 10 month time frame, an autonomous vehicle that ultimately
traveled 63 miles over the Grand Challenge course. Since that time, the technology has been
migrated to a variety of commercial vehicles, including its 2007 Urban Challenge entry – a Jeep
Liberty. All key players from the 2005 team are participating on DesignJug’s Team Juggernaut
for the Urban Challenge, and many of these team members have been working full-time since
then to advance DesignJug’s autonomous vehicle technology for the Urban Challenge.

1.2 Overview
In order to compete in the Urban Challenge, vehicles must maneuver “in a mock city
environment, executing simulated military supply missions while merging into moving traffic,
navigating traffic circles, negotiating busy intersections, and avoiding obstacles.”1 DesignJug has
already had a great amount of success in demonstrating autonomous ground vehicles driving in
an urban area in the presence of vehicular traffic.

The team’s basic approach to solving this complex situation is to create a virtual birds-eye view
where all required pathing for the autonomous vehicle is seen from a high vantage point. The
vehicles and all observed obstacles can be placed on a storyboard statically or with their
changing trajectories. If time is stopped, all possible paths to meet the objective can be drawn
out, the best selected and then executed. The entire process is repeated continuously from this
birds-eye view. Most third-person video games follow this rough approach while imposing real-
time pressure.

Once the birds-eye view has been created, the view is populated with observed objects, the
software progressively identifies those objects and their trajectories, and the field is analyzed.
Obstacles can be observed in real-time using unique cameras systems. Optimum pathing is
developed using a number of various shaped-based techniques. Multiple paths are generated and
weighted based upon parameters such as length, clearance, number of turns and the severity of
the turns, currently routed path, etc. The best path is chosen and executed. This process is
repeated 10-15 times per second.

The core of the development program was centered on a test schedule. Successful completion of
these tests is the goal of the development effort and the assigned tasks. Tasks have been
developed from a known need point-of-view, with a few of an exploratory nature, all supporting
the test schedule. The test detail and schedule are matched to the program schedule.

1.3 Spiral vs. Waterfall Development Paradigm
Two major development paradigms exist for the design and delivery of complex systems. The
waterfall model defines a method of project stages that directly lead from one stage to another
where work is performed in rough sequence — design leading to validation, leading to build,
leading to testing, leading to re-design, and so on. This can be a lengthy process but is easy to
document as to what comes next. Large teams can follow this model because of the documented
path. Exact delivery time is very difficult to predict using this approach because of its linearity.

Team Juggernaut – Copyright 2007, DesignJug® 3

The spiral model follows a path that always has a deliverable at increasing degrees of
performance against a functional goal. Prototypes of functions and systems are rapidly created,
spun into existence, assessed and iterated in small increments toward 100% compliance with
specifications. The functionality of that prototype is assessed against the end goals of the
product. A list of tasks is identified that are required to reach the next goal. Tasks that identify
new elements of the product are spiraled as well, tested and reviewed. Man learns by doing. If
the end goal is known but the path is uncertain, the team learns along the way. Using the spiral
model, a program manager is never without a deliverable and the deliverable progresses towards
full compliance with desired specifications. This approach works well with smaller focused
teams, and our approach for the Grand Challenge and Urban Challenge has followed this model.

Since the majority of the work to be performed for the Urban Challenge is software, particular
attention was given to the system design to make it easy for DesignJug to leverage team
members that have very vertical skills. Specifically, the shared variable (SV)/Pipe architecture
makes it easy for a software design element to be broken into specific sized chunks and then the
interface to that “chunk” is easily identified (SV and pipe contents) and simulated. The software
team member can then design, create, test and deliver that “chunk” back to software assemblers
for integration into the entire system.

1.4 Technology Framework
Preparing for the Urban Challenge is a large, multi-faceted program with many projects. Most
projects can be broken down into small tasks that can then be planned, accomplished and tested.
Although at the top level an individual can define a specific goal and design approach to achieve
that goal, he must be flexible enough to adjust the course of the project or even the program if
success is not occurring in a timely manner as expected. The structure of the entire system must
be designed such that design change can occur at almost any level without impacting the
performance or stability of another level or component. This naturally leads to a
compartmentalized approach where discretive modules can be identified, developed and tested in
isolation and then brought into the whole for integration and further testing.

The entire computing platform and I/O pathing are built on an open architecture (OA) system.
Using Windows XP® as the operating system and USB 2.0 as the primary I/O channel, all
software is written in common, low-skill based languages — this provides the ability to focus on
the application, not the language. By limiting the usage of special hardware or sole source
hardware for the OA platform, we can take advantage of the continual advancement of the
industry. All application software runs as individual executables sharing data among the
executables and the hardware system. Visual Studio® 6 languages, a stable language set, are
chosen as the primary software languages for development. Software components such as
ActiveXs and DLLs (Dynamic Link Library) can be purchased on the market at advanced
version levels, in most cases version 4 and above.

Team Juggernaut – Copyright 2007, DesignJug® 4

A shared memory structure with application data pipes was selected as the primary software
structure. Shared variables (SV) are created in an 8MB area within Windows XP. All
applications can read and write values to and from specific type, defined variables. These SVs
create a real time data dictionary that is managed by the application programs. The SVs contain
dynamic, but snapshot, values defining the vehicle system and its environment. Named data
pipes assigned to each running application are used to communicate sequential information
between those applications.

2. ANALYSIS AND DESIGN

The following paragraphs discuss the programs, components and previously completed work that
support DesignJug’s Urban Challenge effort. The discussion includes accomplishments from the
Grand Challenge as well as programs that were carried forward after the completion of the Grand
Challenge and current efforts. DesignJug gathered, developed and created many supplies and
support materials that directly support the creation and testing of autonomous vehicle
technology.

2.1 Technology Base
The work DesignJug has done is founded on a several key principles that form the basis of the
team’s approach. DesignJug has developed reproducible, universal retrofit mechtronics for the
drive-by-wire portion of the autonomous ground vehicle to leverage the infrastructure of existing
vehicle platforms. The Urban Juggernaut, DesignJug’s vehicle, is designed to rely primarily on
passive sensors such that many of these systems can operate together without interference. An
explanation on the sensors and systems follows.

Shared Memory
Message Pipes

ActiveX
PC #1

Windows XP

Shared Memory
ActiveX
PC #3

Windows XP

Rule Engine/
ExpertSystem

VS6

Messenger
VS6 Loader/

Qualifier
VS6

ServoPod
VS6

Drive
VS6

Diagnostics
VS6

Loader/
Qualifier

VS6
ImageWB

VS6

Alternate
Systems

Shared Memory
ActiveX
PC #2

Linux/XP

USB Cloud

Driving and Operation Rules

LCD
MP3

Radio

Lists Scrolling LED GPS
INU

Compass

OBDII

Shock

Engine Controller
Forth

Steering
H-Bridge

Encoders
Analogs

Discretes

Laser GPS
Compass CAM#1

CAM #2

Logging
TimeScope

Monitor
Moving Map

RDDF

AVIL

Maps

Maps
RDDF

I2C

ActiveX Components
Moving Map
Indicators/Controls
Shared Memory
Message Pipes
Stacks
Comms
Rule Engine
Expression Eval.
Image Tools
Image Capture

Rules

Serial Links

Machine Learning

USB

USB USB

USB
USB

Figure 1, this diagram shows how all
inter and intra-communications
between applications and hardware on
the computing platform can be
monitored and exploited as required in
real-time. Because of this
standardization, a third-party tool is
used to automatically instrument the
code and generate performance data
on every line of code. Significant
performance enhancements are
possible and realized by simply
addressing the identified portion of
code. Another third-party tool is
incorporated for coding style validation.
It checks all written code for specific
classes of coding style problems, flags
those areas and generates a report.
These can be used to assist in the
adjustment of the specific
programmer’s style and clean up
delivered code.

Team Juggernaut – Copyright 2007, DesignJug® 5

For the Grand Challenge, Team Juggernaut developed and fielded technology that performed
Global Positioning System (GPS) path following at speeds greater than 30 mph. The system
includes vision-based obstacle avoidance and vision/object based pathing using a moving map
and objects placed on the map. Team Juggernaut also developed an approach for portable drive-
by-wire implementation. The Grand Challenge vehicle, Desert Juggernaut, did not detect hay
bales at the 2005 NQE, nor had Team Juggernaut worked with a tunnel prior to that time. The
combination of the tunnel and hay bales proved to be the team’s nemesis.

Returning to the Grand Challenge course in late November 2005, the Desert Juggernaut ran 63
miles with largely the same system that was used on race day. A failed alternator coupler brought
the vehicle to a halt. Team Juggernaut created and used a DARPA compliant E-Stop system for
that run.

The Pronto4 Strap-on Autonomy System is a proven drive-by-wire hardware platform that
DesignJug is using in the Urban Challenge. It was spun out of the Grand Challenge as a retrofit
kit for existing vehicles, and has been tested on a number of vehicles, including sedans,
minivans, trucks and SUVs. The Pronto4 system has been released to the market and has
received favorable reviews, with a number of systems being sold. It will also be used by two
other Urban Challenge teams. The Pronto4system can also perform in dual-use environments
driven by a man in normal capacity or machine.

Three primary vehicle actuators are used on the Pronto4 system. The steering actuator turns the
steering wheel through 900 degrees of travel. Steering actuation is limited to +-425° to save wear
on the vehicle power steering system. System latency from the Operator Control Unit (OCU) to
onset of actuator performance is typically less than 150ms. Full lock-to-lock steering can occur
in less than 2 seconds. The steering actuator can deliver up to 50 ft-lbs. without power steering
when required. Nominally 3-5 ft-lbs. are required. Full brake and throttle actuation, 0 to 100%, is
less than 500 ms. Transmission shifting occurs from Park to Drive in less than 1 second,
although the transmission may respond slower based upon vehicle mechanics.

The Pronto4 system runs from a single 12 or 24 vdc power source. Power draw is nominally 5
amps while not driving or running actuators, under 20 amps running actuators without the engine
running and under 10 amps running actuators and the engine. The power module contains a
secondary battery with a high-speed <25 us isolation switch. A simple connection is made to the
main vehicle battery with 6 awg cabling from the power module. All battery charging occurs

Figure 2, the Pronto4™ steering wheel
system, installed in an indigenous vehicle. Note
the single point compliant attachment to the
vehicle and normal room for a vehicle operator.

Team Juggernaut – Copyright 2007, DesignJug® 6

from the main battery. The Pronto4 is quickly isolated (and thus protected) from the main vehicle
power when main battery voltage drops below nominal levels, such as vehicle start, winch
operation or other high draw main vehicle applications occur. 12 vdc is most common on
vehicles, but other voltages are available.

Operations and user interfaces for the Pronto4 system are controlled by software running on a
PentiumM 1.6Ghz or better CPU under Windows XP. User interfaces are all graphical and
intuitive in nature. All vehicle operations can be tested by operation of these graphical user
interfaces (GUIs). Sensors and actuators use either standard serial (RS-232/422 etc.) or USB 2.0.
Most common interfaces are available such as Ethernet, parallel, FireWire, VGA, keyboard,
mouse, etc. Multimedia hardware and drivers are expressly disabled and not loaded on the
Pronto4 system hardware. Where possible, Internet access has been restricted or eliminated.
These simple modifications/restrictions bring XP into the domain of deterministic real-time
operating systems. XP at this point is sophisticated thread manager with a significant inter-
process communication infrastructure.

Control of the Pronto4 system can occur from a number of sources. All Pronto4 system
operations are controlled via shared variables and data pipes. These shared variables reside at the
Windows OS level and can be accessed by any executable. Using the SharedLink protocol,
access to Pronto4 system operations occurs over UDP or serial links accessing any and all shared
variables. Less than 25% of the primary Windows computer is used for operations; therefore,
user programs can reside on that machine with access to the shared variables. For example, to
change steering angle, simply write the steering angle to the VEH_STEER shared variable, or
change a value from 0-100% for throttle and brake to VEH_THROTTLE and VEH_BRAKE.
JAUS RA 3.2/3.3 can also be used to access these shared variables.

Simplicity of installation is addressed on many fronts with the Pronto4 system. Less than 20
cables are required for installation in vehicles using the Pronto4 system in tele-operation or semi-
autonomous modes of operation. The majority of the cables are 4 conductor shielded used for
communications, 19 conductor cables for signaling and 2 and 4 conductor cables used for power.

Other specifications include:

 Capable of standard driving speeds up to 60 mph
o City, highway, off-road

 Weighs less than 100 lbs.
o No special equipment is needed for transporting the kit
o Minimizes shipping costs

 Open architecture, Windows-based interface
 900° lock-to-lock steering wheel angle (+/- 450°)
 Steering response time (lock-to-lock) when vehicle is in motion < 2 sec.
 Brake and throttle response time of command (0-100-0%) < 1 sec.
 Command latency approximately 150 ms
 System operates via a 115.2K baud stream
 Ancillary functions include lights, turn signals, and horn

o Provides for RPV, RGV use after dark
o Conforms to visual and auditory signals expected by drivers in manned vehicles

Team Juggernaut – Copyright 2007, DesignJug® 7

 Optional ancillary functions available
o Door locks, wipers, windshield fluid spray and electric windows

 Fits in a 24” x 20” x12” envelope, uninstalled
o Minimizes space required inside the vehicle/vessel

2.2 Primary Sensor Approach
To achieve the criteria for the Urban Challenge, DesignJug has needed to significantly improve
the Urban Juggernaut’s sensor platform, as well as the ability to correlate and train that platform.
Based primarily on vision systems using Laser Imaging Detection and Ranging (LIDAR) for
training, DesignJug has built modular vehicle instrumentation platforms using standard vehicle
racking sytems (Thule or Yakima). These instrumentation racks are mounted on the top of the
Urban Juggernaut and other test vehicles and are not vehicle specific. This many test platforms
are available not just our race vehicle. Sensors include:

• Two to Four (4) proximal and one (1) central multi-mode, omni-directional cameras
• Two (2) to four (4) laser scanners, 180 degrees, and one laser range finder
• Two (2) color cameras

This platform will be used for all localization, navigation and environment observation of and
around the vehicle. There is a front, rear and side mounted ultrasound ranging system for close
field identification of less than 10 feet. There are front and rear mounted strip cameras that will
observe the ground immediately in front of and behind the vehicle for ground mark verification.
In addition, an existing dual antenna standard GPS (high availability), differential GPS (low
availablility), magnetic compass, gyro-stabilized INU, and other sensors are located in or on the
vehicle.

Figure 3, shows the sensor suite on the Urban
Juggernaut. Additional sensors are located on the
sides, front and back of the autonomous vehicle.

2.3 Camera System
A 180 degree laser fan on tilt platforms, called a laser autoranger, is created using a SICK laser
scanner. Initial work is done with a single forward facing laser autoranger an additional rear
autoranger may be added prior to the NQE.

Team Juggernaut – Copyright 2007, DesignJug® 8

The 180 degree laser fan with variable termination (approach angle) is a brute force method to
measure distance to the vehicle and movement of hard objects in relation to the vehicle.
Processing and proper characterization of this data is challenging but relatively straightforward
to achieve. This sensor is an emitter and ultimately very undesirable to be used for a final
system, but it is an excellent real-time quantification of discerned objects in the omni-view birds-
eye view. The laser distance system is being used to develop and test the birds-eye view, and the
laser systems will be used to train the omni-view system.

The two to four omni-view cameras create a more detailed birds-eye view of the vehicle and its
surroundings. The omni cameras are placed on each corner of sensor platform located on top of
the vehicle. These omni cameras are hyperbolic mirror based upon test results as opposed to the
original spinning mirrors prototypes. Additionally, one omni-view camera raised in the center of
the instrument grid will also provide a single, gross, birds-eye view. The fast pan 3D stereo
camera is placed inside the vehicle and observes from a human point of view.

Figure 4, is the Laser Autoranger that DesignJug
designed. It can tilt dynamically between a fixed set to
start and stop angle based upon the configuration of the
linkage bar. An eight-station Geneva mechanism (not
shown) allows for five fixed angles to be continuously
scanned or continuous angular change to occur (the
figure shows the Autoranger set for continuous scan).
Current actual usage is a tilt angle on demand based
upon driving conditions and situation. The laser can
scan up to 300 feet in a max 180 degree fan. It is limited
to a 95 degree fan for practical usage. 1 to 2 of these
lasers and their Autorangers are be used on the top of
the vehicle and mounted in the middle of the sensor
platform. They will cover 360 degrees around the vehicle
from 0 to 25 degree tilt or 300 feet to 10 feet based upon
tilt to earth. Twenty-five degrees looks within 3 feet of
the vehicle.

Team Juggernaut – Copyright 2007, DesignJug® 9

Figure 5, two types of Omni Cameras were
designed and tested. One uses a continuously
rotating mirror and collects its 360° view over a full
revolution of the mirror. The image is un-rotated by
software or a video processor in real-time. It has the
advantage of being able to collect quite a bit more
information with a lower resolution camera. There is
no data loss in the collected images, but it has
moving parts and a lower frame rate. The hyperbolic
camera generates a 360° view of the surrounding
environment in a single frame. It must be
unwrapped by software for human viewing but can
be used for object movement detection and
quantification in the images as is. The drawback is
that there is a loss of image quality close to the
camera and a reasonably intensive routine is
required to unwind the image. It has no moving
parts and is very simple to install. These are
designed to dimensional specifics (minor a and b)
and aluminum evaporated at our lab. Each were
evaluated and used in our vehicle testing.

Omni Camera on Instrument Rack

 Production Camera
Production Prototype Camera

The ultimate goal is the use of a single omni-view camera and 3D fast pan camera mounted
inside the vehicle. The software “view” system will need to be developed and cross-referenced in
layers in order to achieve this goal. The single camera can be used to find unexpected or gross
motion. The fast pan cameras can be used to refine the image areas the omni camera identifies.

The omni-view cameras are based on application-specific, hyperbolic mirrors. DesignJug’s
research lab has an in-house aluminum evaporator and four-axis mill for the creation and
“silvering” of these hyperbolic mirrors. Mirror geometry is based on optimization of parameters
between desired resolution and vertical viewing cone. Hyperbolic omni-view cameras require no

Team Juggernaut – Copyright 2007, DesignJug® 10

moving parts. Accurate distance measurement up to 300 feet are directly achieved using pairs of

cameras. In this configuration, six pairings of cameras can be utilized.

Existing hardware quad camera multiplexing allow all omni cameras to be viewed and operated
upon on the same frame. Frame capture takes place at the lowest usable resolution. Resolution
scaling (320x240 to 640x480 to 1024x768) is used to reduce processing load until something
interesting needs to be “focused” upon.

Once an area of interest is determined, the 3D fast pan camera observes the area in more detail
and further enhance the detail in the Actively Refined Reality Model (ARRM).

Since the camera system is the primary means of object identification and navigation assistance,
care is taken to assure the best possible images. Shadows are expected to cause a significant
issue with obstacle or blocked road detection. A shadow camera is used help assess in real time
where shadows are and their density. The cameras are dynamically adjusted based upon the data
from the shadow camera.

The entire sensor system is simulated to assure proper coverage as it changes dynamically.
Figure 8 shows how Team Juggernaut easily accomplished this using a programmable CAD
system.

Figure 6, the Fast Pan Camera is made of a pair of
cameras mounted on a rapid-moving, low mass platform.
This camera can pan as fast as the human head and can
follow a head tracker as needed. In autonomous mode it
is used to look at areas of interest (or movement)
identified by the omni cameras and collect higher
resolution images. The cameras operate in field
sequential mode when used for tele-operations, providing
the remote pilot with 3D vision. The primary usage of the
3D vision is not to give the pilot depth perception but to
significantly reduce blind spots in the vehicle, which
allows the fast pan camera to be placed inside the
vehicle. This approach uses standard vehicle window
cleaning equipment, thus increasing the operational
environment of the vehicle, and it also allows for a more
covert installation of the cameras. The two cameras are
currently mounted on each headrest of the vehicle front
seats, which does not interfere with seated driver or
passenger.

Team Juggernaut – Copyright 2007, DesignJug® 11

Figure 8, using IronCAD®, physical
vehicle information is placed alongside
actual road dimensions and physical
sensor mechanics. It is then possible to
see, in real-time, the sensor coverage as
it dynamically changes while the vehicle
drives along a known course such as that
defined by a mission data file (MDF)
within an RNDF. This allows the sensor
fans to be optimized for the best
coverage balanced against resolution.
Left, the four lasers are tilted at 0 degrees
with a 200 foot range. Below, the vehicle
has moved along the road and the lasers
are tilted to 15° intersecting the road.

2.4 Actively Refined Reality Model
This reality model is the core of the navigation and pathing of the autonomous vehicle and is
actively refined using the primary sensor system. A route network definition file (RNDF) is
loaded into a vehicle database along with its defined or inferred objects. It creates an observation
mask that is laid down upon the mapboard. That mask is used to filter out or quantify the “noise”
seen in the birds-eye view generated by the omni-view cameras. As the vehicle drives around the
RNDF it observes and gains clarification of various objects as well as refines the attributes or
objects defined in the RNDF. These observations are documented in the database in real-time.

2.5 Pathing
The problem of navigation from one checkpoint to the next can be solved by a reduction to a
directed graph traversal. Each checkpoint is a node in the directed graph, and an edge represents
a direct path between two checkpoints. In order to facilitate different route selection choices

Team Juggernaut – Copyright 2007, DesignJug® 12

within this framework, each edge will have significant amounts of data associated with it. The
simplest model only associates the GPS waypoints that describe the path with each edge. In order
to implement more complex route selection (shortest path, minimum left turns, etc.), many other
attributes can be associated with an edge, including distance, number of left turns, etc.
After the RNDF has been transformed into a graph representation, it is then easy to build a table
of all possible paths. The graph already represents all paths with one edge, so we build a table of
all paths from two edges up to an arbitrary N edges. However, the search may be exhausted
before the path of N edges is reached, so a path is considered exhausted when it crosses a
checkpoint already existing within the path. Once this table is complete, it can be organized to
list all paths between checkpoints A and B, sorting them by some chosen criteria.

It is possible that the computational complexity of this table generation may be overwhelming,
but there are other possibilities that stem from the directed graph representation of the RNDF.
For example, the actual path search could be performed using some variant of the A* algorithm
with appropriate pruning filters. If necessary, a probabilistic framework could be exploited as
well, where path possibilities are ranked according to their likelihood of meeting the criteria for
success. These methods, or the methods described above, can be used to find an appropriate path
between any two checkpoints. Also, the methods can be used iteratively to find an optimal path
crossing all MDF checkpoints, in the specified order, while following traffic laws.

In this framework, route selection becomes an O(1) operation after significant preprocessing: the
worst case time for generating the graph representation is O(n2), generating all possible paths as
described above is O(n!). However, this may not be a significant problem, as the n will be
relatively small (likely less than one hundred) and the software does not have a significant time
bound on preprocessing the RNDF since it will be done off-line. Implementing optimizations,
such as chaining already-searched paths, will decrease the complexity. Similarly, the simple
solution to dynamic changes in the RNDF (road blockages, etc.) will be to simply rebuild the
graph and the path list with optimizations made allowing quicker and simpler recalculation.

While this approach solves the overall problem of map-based path planning, the path between
two points associated with an edge on the graph does not necessarily contain enough information
to successfully navigate from one checkpoint to the next; it simply contains the GPS coordinates
given in the RNDF. It may be necessary to follow road markings, navigate open spaces like
parking lots, or face other challenges.

Alternate approaches to pathing include the ability to treat the graphical RNDF with MDFs
similar to that of a printed circuit board (PCB) that has many obstacles and routing constraints.
Multiple paths are generated and weighted based upon parameters such as length, clearance,
number of turns, severity of the turns, currently routed path, etc. The best path is chosen and
routed and assigned a certainty number. Shape-based techniques prove to be the most general at
solving complex routing problems. Team Juggernaut has expertise in PCB routing and CAD
creation.

2.6 Software Base
The existing software base is very extensible. Functions can be easily enhanced and new
functionality added with minimal effort and impact. All functions needed to meet the Urban

Team Juggernaut – Copyright 2007, DesignJug® 13

Challenge requirements are created or framed within this code base. The software base is quite
visual, allowing communication among team members while easing testing and validation. These
are all significant, qualified programs that perform critical autonomous ground vehicle functions.
Following is a partial list of developed software programs:

Table 1, Autonomous Ground Vehicle: Grand Challenge and Post Grand Challenge
Grand Challenge 2005 Software
*djLoader Convert serial streams to SVs, qualify sensor data, perform correlation
djMessenger Manage system messages, logging, distribute to user displays
djServoPod Interface to vehicle FORTH based computer and actuators
djDrive Pathing and vehicle driving, execution of scripting language AVIL
*djImageWB Image processing and development, video frame capture, object detection
djMMViewer Vehicle performance playback, post analysis of vehicle dynamics
djMonitor SV monitor, strip chart, XY scope, diagnostics, logging
djMission Mission planning – vehicles, courses, missions, RDDF editing/generation
* Modified for Post Grand Challenge Use
Post Grand Challenge Software
djSharedLink Spread spectrum radio point-to-point SV link, command/control
djSharedLCD Real-time user display of SVs and video annotation, editing of displays
djDriveByWire Human vehicle driving interface, wheel, brake, throttle, shifting, ancillaries
djMachineI Machine intelligence dev., SVinterfaces for neural nets and fuzzy rule sets
djSVManagement Create, operate shared variables, SVs and named pipes, diagnostics
djSimulate Real time birds-eye view driving, simulation testing, multiple vehicle testing
djOmniView Management of omni-vision cameras, object detection and localization
djDrivenbyWire Local logic operations for RCV and RGV vehicle modes, script processing
djAuxFunctions Control of ancillary vehicle functions
djVideoHead In-vehicle video operation management, video multiplexer, overlay text
djVideoLook Host vehicle video operation control panel, 3D headset, head tracking
djEmulate Real-time UGV emulation in virtual worlds, PC based targeted at Xbox 360
djPark UGV parking management, RNDF generation/editing
djPerformance Real-time assessment of vehicle performance and temperature monitoring

2.7 Workbenches
Extensible workbenches (WB) are created with predefined software interfaces to vehicle
platforms. Each of these platform-interfaced workbenches allows the software engineer the
ability to explore, develop and test application code at his/her desk prior to bringing it to the
vehicle. Iterations per hour for the engineer are significantly increased. The WBs are used in the
vehicle run-time environment as well as offline to develop approaches and algorithms. WBs are
provided to universities and partners to focus development on the required application/vertical
problem. The WBs have the ability to record and playback pertinent information.

These are two of the many workbenches that DesignJug developed for usage with our Urban
Challenge effort and are now used to solve challenges associated with autonomous ground
vehicle development: one is for the vision systems (Figure 9), the other is for implementation of
contained machine intelligence (Figure 10). Other workbenches cover simulation, pathing and
planning.

DesignJug uses the djMachineWB for “calibrationless” steering straight algorithms, control loop
tuning and adaptive speed control, and the team will also explore image processing and open
space path planning.

Team Juggernaut – Copyright 2007, DesignJug® 14

Figure 9, the DJImageWorkbench is
used to develop image processing
algorithms. It uses a series of
recorded, instrumented images (video)
played back through various image
detection methods and operations.
Shown are methods of GPS waypoint
image projection, road color bucket
imaging and edge of road detection,
separated for clarity, all on the same
section of road. The data is fused into
a single display with a moving map
and the course traveled. The images
can be single stepped or played back
at the recorded rate up to 30 frames
per second. Instrumented data such
as GPS, heading, speed, etc. is
displayed.

Team Juggernaut – Copyright 2007, DesignJug® 15

Read System
Shared Variables

Fuzzy Engine #1, #2

Write System
Shared Variables

Online & Offline
Neural Network #1

Rule Based
Inference Engine

Read System
Parameters

Write System
Parameters

Backus-Naur Based
Genetic Algorithms

Range and Slew Rate
Controlled Outputs

Real Time Operations

Performance Tuning Operations

Figure 10, the
djMachineIWB is used to
develop and test
nonlinear learning-based
algorithms in a machine
environment. Recorded
information about system
behavior can be played
back in discrete steps or
in volume. Learning or
convergence can occur
offline or when attached
to the vehicle. All
parameters
 and I/O can be
interfaced to the vehicle
through SVs data pipes.
Script editing and
execution occur in this
WB. After a net has been
trained or a rule base
created they can be
directly tested on the
vehicle in real-time in a
very contained
environment.

Figure 11, the Vehicle Physics
Simulation Program is used to test
the ActiveX® vehicle dynamics
component that runs on the
autonomous ground vehicle in real-
time as part of the sensor data
validation. This test environment can
simulate multiple vehicles at once for
following mode testing and others. The
program uses or generates SVs to
interface to the actual system. A birds-
eye mapboard is used to place the
vehicle, known route information and
aerial photos, as well as other objects.
This tool can be used as a source of
user data or to playback recorded data
from the vehicle. An external steering
wheel can drive the simulated vehicle
and has parameters such as weight,
turning radius, static and dynamic
friction coefficients, acceleration,
braking distance, etc.

Team Juggernaut – Copyright 2007, DesignJug® 16

Figure 12, the RNDF/MDF Graphical Editor with
GIS Synchronization used to create and manage
test courses as well as the primary database used
to store the RNDF and MDF on the vehicle.
Images, left, of the DARPA supplied RNDF and
MDF and, above, of Skyline High School driver
training range.

Team Juggernaut – Copyright 2007, DesignJug® 17

All of the programs described in this technical document fit within the above frame work.
This framework allows for the operation of our autonomous ground vehicle in a number
of modes from simple drive-by-wire to full autonomy.

3. RESULTS AND PERFORMANCE

3.1 Risk Mitigation
In addition to continual program management, four measures are utilized to assure that risk is
kept to a minimum during the entire development cycle.

Computing Performance: Performance measurement is continuously calculated and recorded
through calculation of the whetstone algorithm. At a system level, whetstones per second are
calculated every 10 seconds for about one second with remaining computing power. This
performance value is affected by software, hardware health and temperature. Changes in this
value are directly related to changes in hardware or software of the system.

Altered thinkingtm

Pathing / Driving Shared Link

Serial Stream Loader
Actuator Control

Video Annotation

Vehicle Localization

User DisplayVideo Source Mngt.

Ancillary Control

Status, Temp, Logging

Vehicle Physics Sim.

3D Virtual Vehicle Emulation

Scene Comprehension

Mission Planning, RNDF/MDF Editor

Serial Stream Loader Shared Link

Shared Link

Video Annotation

User Display

Video Annotation

Serial Stream Loader

Drive-By-Wire

Sequencer Performance Shared Variables

Video Use Management

Host/
Ground
Control
Station

Vehicle
Control
Computer

Image
Processing
Computer

Altered thinkingtm

Team Juggernaut – Copyright 2007, DesignJug® 18

“Thoughtless” Recording: Many parameters are recorded each time the system is run without
any need for human intervention. When a problem is noticed, the already recorded data can be
reviewed for first occurrence and cause.

Acceptance Test Plans: The continuous execution of the ATP not only assures proper operations
for testing and usage of the vehicle, it assures that the vehicle’s systems are functional over the
long term of the project.

Multiple Prototypes/Deliverables: The creation and continuous migration of multiple prototypes
and deliverable systems assures that there is not downtime associated with device failure and
provides a sequence for the migration of newly completed technologies through the numbered
functional systems. The sheer number of hours on these units helps to assure robustness.

In addition to the above unique mitigations, standard IT security and safekeeping practices are
employed to assure preservation of the technology.

3.2 Test Facilities
DesignJug has a fully functional and equipped autonomous vehicle technology development
laboratory, as well as warehouse space where static sensor development and testing occurs. In
addition, DesignJug uses three different sites for testing:

• Skyline High School Driving Range, Salt Lake City, Utah — this is a driver’s education
course designed to test all aspects of vehicle operation by new, human drivers. The site is
about three acres with a fence and K-rail on three sides. An observation tower is nicely
located in the center on one side of the course. The course is small with the longest
straight away about 350 feet, but very contained and performs well for navigation testing
and limited traffic testing.

• West Valley City Driver License Office, West Valley City, Utah — a large driving range
in a controlled area. The range has multiple intersecting roads with stop lights, signs and
striping. It also has a railroad crossing and other urban road features, making it an ideal
location for testing in an urban setting.

• Bonneville Seabase, Grantsville, Utah — a free form, 16 square mile area where
DesignJug can drive anywhere. Using aerial photos, DesignJug laid down the 2.2 mile
Grand Challenge NQE course on this test site and ran it daily. However, the site does not
have a tunnel. It is fenced and well away from any human or vehicular traffic, with zero
penalty for going off course. The team usually tests multiple vehicles at once with several
test teams. Testing here is informal, allowing software folks the ability to try stuff
without a time or formality hit. DesignJug performed significant Grand Challenge testing
at this site and it hosted DARPA’s site visit.

3.3 Test Documentation
Proper and adequate testing is the only way to assure that this technology achieves the planned
results. An Acceptance Test Plan (ATP) has been created for each autonomous ground vehicle
that will be used for testing. The ATP consists of a written procedure and a test record, and it is
executed almost on a continuous basis as an overall regression test to assure proper vehicle
operation prior to testing of new software or hardware. The ATP is continuously evolving as it is
revised (added to, edited) upon the discovery of features or performances that do not meet

Team Juggernaut – Copyright 2007, DesignJug® 19

expectations. The ATP documents weak points or areas prone to failure in order to assure
function prior to moving forward. The ATP is not a 100 percent test since its performance goal is
less than 30 minutes, but it does test functions and features that are the end results of many
properly operating sub-functions. In theory, the revised ATP just prior to delivery (race) covers
100 percent of the system (directly or indirectly). The ATP is performed on an informal and
formal basis: informally used during development cycles to assure that the vehicle is in a known
state before new features are introduced (informal ATPs are not recorded); and formally before
loading for each field test, after unloading for a field test (in the field) and before formal
demonstrations (each formal ATP is recorded on an ATP Test Record).

3.4 Testing Process
Team Juggernaut tests continuously, whether it’s in the lab or in the field. The team uses testing
metrics to evaluate whether an addition is improving the performance and function of the system.
These metrics can be run virtually or in real-time, allowing team engineers the ability to test
from the lab before testing in the field.

In order to assure that each field test occurs with the most chance of success, a fairly rigid
process is followed. A test objectives document was created which includes the test site, test
staff, noted changes to the vehicle system and objectives of the test. These objectives are used to
determine the success or failure of the test and as a communications tool to the test team. The
test objectives document also becomes the test record. The ATP is executed prior to stowing and
loading the vehicle on the trailer. A stow/load procedure and checklist is executed to assure that
the vehicle is properly prepared for travel. A test record is filled out for the ATP and the
stow/load. After traveling to the test site, the vehicle is unloaded using a test/unload procedure. A
full ATP is then executed to assure proper vehicle and system operation. A test record is filled
out for the ATP and the test/unload. Prior to testing a safety briefing is performed by the test
team leader or assignee. The safety briefing follows a safety briefing checklist.

3.5 Recent Test Results

This document was required by DARPA as a precursor to the Site Visit. In recent weeks and
months the following has been tested in a tier approach leading up to the site visit and beyond.

1. Speed independent GPS path following
2. Stop and go traffic operation with leading vehicles, stop bars
3. Fourway stop precedence
4. Dynamic re-pathing while underway
5. Obstacle detection, classification and management
6. Road marking detection and management
7. Unplanned collision avoidance execution
8. Canned routine execution – U-turn, curve based turn, entry and exit of parking stall
9. Reverse operations
10. Omni-detection overview of traffic situations.

These tests have been perfomed with varing levels of success. When a test does not go as
planned or the results are different than expected that task is divided into successful and not-so-

Team Juggernaut – Copyright 2007, DesignJug® 20

successful components. Those components are then tested separately and revised until success is
achieved. With this approach, all testing ultimately is successful as that is what is required to
move the program forward.

4. FUTURE DEVELOPMENT

As the program progresses the conditional logic nature of the systems is being migrated into
adaptable scripting languages such as AVIL (Autonomous Vehicle Interpretive Language) and
FIRE (Forth Inspired Rule Engine). These will allow the behavior of the vehicle to be modified
on the fly. The system will then begin to use rule schedules to achieve the behavior required for
the desired functionality based upon the perceived situation.

Since all software functionality is basically executable components, these will be enhanced from
their existing performance levels on an individual basis. This modular approach to software
development with multiple executables running under a common thread manager lets each
module improve independently all bounded by the ATP.

5. CONCLUSION
With a proven hardware platform and continued software and sensor advancements, DesignJug
is confident it can competitively compete in the 2007 Urban Challenge. The team’s design
approach and its commitment to daily testing allow for a high level of interoperability among the
autonomous ground vehicle’s various systems and components. These performance levels will
continue to increase as the team accelerates its development and testing over the coming months.

DesignJug recognizes that significant obstacles remain before the team can achieve its goals, but,
with well-defined benchmarks established and the team’s proven ability to integrate additions to
the vehicle, these obstacles can be overcome. DesignJug looks forward to these challenges in
preparation for the Urban Challenge.

We never turn the vehicle off, it physically drives autonomously every day.

References

1 The Defense Advanced Research Projects Agency (DARPA) Web site,
http://www.darpa.mil/grandchallenge/overview.asp, retrieved May 23, 2007, on the World Wide Web.

